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We introduce an exact equation for the time evolution of a classical many-body system, and apply it to the
one-dimensional gravitational gas. An irreversible approach to a final density distribution is found for a large
class of initial momentum distributions, allowing us to introduce the idea of ‘‘semiergodicity.’’
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I. INTRODUCTION

An incomplete statistical description of a classical many-
body problem may be expressed by the time evolution of the
one-particle distribution functionf (r ,p,t), where r and p
represent the coordinates and momentum of one particle. To
complete the description, it would be desirable to specify the
correlation functions as well, but given the severe difficulty
of specifying the behavior of allN particles of a system, we
choose to start first withf (r ,p,t). To achieve this goal, we
adopt some formal results reported earlier@1–3# in both clas-
sical and quantum systems. Furthermore, in this work, we
limit ourselves to a one-dimensional gas consisting of iden-
tical particles that interact by gravitation, the favorite toy
system in stellar dynamics. We find that for some initial
conditions, the system irreversibly approaches some spatial
density distribution. We suggest to call such a system
‘‘semiergodic’’—ergodic only in spatial behavior. We also
attempt to show that the formation of microstructures occurs
quite naturally in the one-dimensional gravitational gas.

The mathematical method we will use is, to our knowl-
edge, new even in nonequilibrium statistical mechanics, so
we find it appropriate to quickly reexpress our method of
iterated projections for application to stellar dynamics. So in
Secs. II and III, we offer a summary of the procedure to
arrive at an equation for the exact time evolution of the den-
sity of a system. After the formal presentation, we end up
with a final formula that has no more bearing with the
method of iterated projections, with wide applicability to
many systems.

In Sec. IV, we reduce the formula to the case of one
dimension, then we specialize to the gravitational pair poten-
tial in one dimension given by

V5gur i2r j u, ~1!

whereg is a constant for identical particles. We consider one
initial condition representing the one-dimensional equivalent
of a nonsingular ‘‘petite-bang’’ initial condition, which re-
duces in the appropriate limits to a singular ‘‘petite bang’’
@4#, or ‘‘petite collapse.’’ This example is a ‘‘cosmological’’
must for any claimed exact time evolution equation. Having
established the use of the exact equations for the one-

dimensional gravitational gas, we offer in the last section
some suggestions on the application of our general approach
to three dimensions.

II. APPLICATION OF THE METHOD
OF ITERATED PROJECTIONS

The process of contracting the description from the
N-particle distribution functionf N

N @N spatial coordinates
~subscript! andN momenta~superscript!# to the one-particle
distribution function,f (r ,p,t)5 f 1

1, is accomplished in two
steps. First, we derive an exact formal solution for
f 1
N(r ,pN,t), and then integrate over all momenta but those

belonging to one particle, effected by the operator
I 15*dpN21. The reason for doing this in two steps is that
the integral over unwanted space coordinates may be defined
as a projection operator, while integration over the momenta
is not a projection operator.

Let us define

Pk5
1

VN2k E drN2k, ~2!

whereV is the volume of the system. This volume will dis-
appear from our final results once we properly normalize the
distribution functions.

When k50, Po integrates out all space coordinates, and
one gets, for example,

fN~pN!5Pof N , ~3!

the N-particle momentum distribution function. From Eq.
~3!, one can define

w~p,t !5I 1fN5E dpN21fN . ~4!

In the past, projection techniques have not resulted in nu-
meric results, as may be verified by examining the literature
@5#. By contrast, we carry out our operator formalism to pro-
duce numerical results. To show this, it is worthwhile first to
present some formal results@1–3# applied to nonequilibrium
statistical mechanics.

Following a method utilized in several forms@1–3#,
which goes well beyond the usual approach using projection
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techniques@5#, one can write the formal solution forPkf N ,
which for now we simply write asPfN5 f P :

f P5g1h, g5 (
m50

`

gm , h5 (
n21

`

hn , ~5!

where

g05F~ t,0! f P~0!, h15E
0

t

ds1 F~ t,s1!PLG~s1,0!QfN~0!,

~6!

gm5E
0

t

ds1E
0

s1
ds2 J~ t,s1 ,s2!gm22~s2!, ~7!

hn5E
0

t

ds1E
0

s1
ds2 J~ t,s1 ,s2!hn22~s2!, ~8!

J~ t,s1 ,s2!5F~ t,s1!Po~Lo1Li !G~s1 ,s2!Q~Lo1Li !,
~9!

F~ t,s1!5e~ t2st!PL, G~s1 ,s2!5e~s12s2!QL, ~10!

Q512P, ~11!

L5Lo1Li ,

Lo52(
j51

N
pj
m

]

]r j
,

Li5
1

2 (
jÞk

]V~ ur j2r ku!
]r j

S ]

]pj
2

]

]pk
D . ~12!

We now perform the following general procedure analo-
gous to those used for quantum systems@1,3# but not detailed
in the classical version@2#:

Step 1.First, observe thatG(s1 ,s2)QL5QLG(s1 ,s2) so

gm5E
0

t

ds1E
0

s1
ds2 F~ t,s1!PLQLG~s1 ,s2!gm22~s2!.

~13!

Step 2.Differentiate Eq.~13! two times:

gm8 5PLgm1PLQLE
0

t

ds2G~ t,s2!gm22~s2!, ~14!

gm9 5PLgm8 1PLQLgm22

1PLQLQLE
0

t

ds2G~ t,s2!gm22~s2!

or

gm9 2@PL1PLQL~PL!21#gm8 2PLQLgm22

1PLQLgm50, ~15!

where if necessary, we use the Feynman definition for the
inverse operator

~PL!215E
0

`

dv e2vPL, ~16!

Step 3.Sum Eq.~15! from m50 to infinity to give

g92@PL1PLQL~PL!21#g8

5g092@PL1PLQL~PL!21#g081PLQLg050,
~17!

where we have used the definition forg0 in Eq. ~6!.
Step 4.Set the boundary conditions

g~0!5 f P~0!,
~18!

g8~0!5g08~0!50.

Step 5.Follow a similar procedure forhn to give

h85h181PLh1PLQLE
0

t

ds2G~ t,s2!h~s2!, ~19!

h92@PL1PLQL~PL!21#h8

5h192@PL1PLQL~PL!21#h181PLQLh150,
~20!

again using the definition in Eq.~8!.
The fact that the inhomogeneous terms in Eqs.~17! and

~20! are zero is a rigorous property for anyP.
Step 6.Set the boundary conditions

h~0!50,

h8~0!5h1~0!5PL fQ~0!. ~21!

Step 7.Evaluate

PL1PLQL~PL!215PL1PL~12P!L~PL!21

52PL5PL2~PL!21 ~22!

so that

g92PL2~PL!21g850 and h92PL2~PL!21h850.
~23!

With the boundary conditions given by Eqs.~18! and ~21!,
the solutions of Eqs.~23! are

g5 f P~0!1@exp~ tK !21#K21PL fN~0!, ~24!

h5@exp~ tK !21#K21PL~12P! f N~0!. ~25!

Let us putP5P15(1/VN21)*drN21. With this projection
operator, we find that the exact solution for the function
f P1(t)5 f 1

N(r 1 ,p
N,t) from Eq. ~5! is given by

f P15 f ~r ,pN,0!1@exp~ tK !21#K21P1L f N~0!, ~26!

whereK5PL2(PL)21.
Integrating this over all momenta but one, we get
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f ~r ,p,t !5 f ~r ,p,0!1E dpN21@exp~ tK !21#K21P1L f N~0!,

~27!

which we will now simplify.

III. ONE-PARTICLE DISTRIBUTION FUNCTION

We first rewrite Eq.~27! as

f ~r ,p,t !5 f ~r ,p,0!1I(
j51

`
t jK j21

j !
PL fN

N~0!, ~28!

whose sum we now decompose and simplify term by term.
We follow the technique in Refs.@1–3#, and arrive at some
expressions for each term of the series. Although somewhat
repetitive, it is important to present the details because the
operator techniques used in this paper are uncommon in clas-
sical physics.j51:

t

1!
IPL f N

N~0!5
t

1! FLo~1! f ~r ,p,0!

1n0E dr8
]V~r2r 8!

]r

]

]p
f 2
1~r ,r 8,p,0!G ,

~29!

wheren05(N21)/V, the average density for the system and
Lo(1) is now simply a one-particle expression.j52:

t2

2!
IPL2f N

N~0!5
t2

2!
@Lo

2~1! f ~r ,p,0!1IPM fN
N~0!#,

~30!

whereM5LoLi1LiLo1L i
2. j53:

t3

3!
I ~PL2!~PL!21PL2f N

N~0!

5
t3

3!
I ~PL2!~PL!21@PLo

21PM# f N
N~0!.

~31!

We are now obliged to simplifyI (PL2)(PL)21P since this
expression will recur in later expressions. The rightmostP
makes everything to the right of the expression a function of
only one coordinater , where we have suppressed the particle
label 1. Now from Eq.~16!,

~PL!21P5E
0

`

dv exp~2vPL!P

5E
0

`

dv(
j50

`
~2vPL! j

j !
P

5E
0

`

dv(
j50

`
~2vPLo!

j

j !
P5~PLo!

21P.

~32!

Equation~32! is shown by using the fact that the integral of
the force on a particle over all space is zero.

Next, we look at

PL2P5~PLo
21PLoLi1PLiLo1PLi

2!P

5@Lo
2~1!1Lo~1!PLi1PLiLo1PLi

2#P.

In the second term, we again encounterPLiP50 and in the
third termLo andP commute, to make it zero as well, al-
lowing us to write

IPL2P5I ~PLo
21PLi

2!P5S Lo2~1!1b
]2

]p2D IP,
b5

~N21!

V E dr8F]V~r2r 8!

]r G2>n0E dr8F]V~r2r 8!

]r G2,
~33!

wheren05(N21)/V. b is in general a function ofr and
the location of the walls of the vessel, but when an infinite
system is considered, it may turn out to be just a constant, as
in analogous evaluations of similar expressions in virial ex-
pansions. We have not gone to the thermodynamic limit and
we should remember this subtlety. Accordingly, we should
not always treat it as a constant when operators act on it, but
in this paper, all the operators we use are such that it is
effectively a constant.

With the definition Eq.~33!, we can rewrite Eq.~31! as

t3

3!
I ~PL2!~PL!21PL2f N

N~0!5
t3

3!
@Lo~1!1b¹p

2Lo
21~1!#

3@ IPLo
21IPM # f N

N~0!

~34!

and from now on, we may write

IKP5IPL2~PL!21P5@Lo~1!1b¹p
2Lo

21~1!#IP,
~35!

where we give the usual Feynman interpretation for the in-
verse operator.

Finally for j53, we can write

t3

3!
I ~PL2!~PL!21PL2f N

N~0!

5
t3

3!
$@Lo

31b¹p
2Lo# f ~r ,p,0!

1@Lo1b¹p
2Lo

21#IPM fN
N~0!%, ~36!

where we have now removed the index~1! for the free par-
ticle operatorLo as is now clear that all future occurrences of
the operator refer to a single particle.

The expressionIPM f N
N may still be simplified:
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IPM fN
N5IP~LoLi1LiLo1Li

2! f N
N~0!5LoIPLi f N

N1IPR fN
N52n0

p

m

]

]r E dr8
]V~r2r 8!

]r

]

]p
f 2
1~r ,r 8,p,0!

2n0E dr8
]V~r2r 8!

]r

]

]p S pm ]

]r
f 2
1~r ,r 8,p,0! D2n0E dp8E dr8

]V~r2r 8!

]r

]

]p S p8

m

]

]r 8
f 2
2~r ,r 8,p,p8,0! D

1n0
2E dr8E dr9

]V~r2r 8!

]r

]

]p S ]V~r2r 9!

]r

]

]p
f 3
1~r ,r 8,r 9,p,0! D

1n0E dr8S ]V~r2r 8!

]r D ]

]p S ]V~r2r 8!

]r

]

]p
f 2
1~r ,r 8,r 9,p,0! D . ~37!

We write down thej54 term to exhaust all the tricks that one could use, and introduce the notationD5b¹ p
2:

t4

4!
IK 3PL5

t4

4!
IKPK2PL5

t4

4!
~Lo1DLo

21!2IPK2PL fN
N~0!5

t4

4!
~Lo1DLo

21!2IPL2f N
N~0!

5
t4

4!
$@Lo

41LoDLo1DLo
21DLo

21DLo# f ~r ,p,0!1@Lo
21LoDLo

211D1DLo
21DLo

21#IPM fN
N~0!%

5
t4

4!
$@Lo

41LoDLo1DLo
21DLo

21DLo# f ~r ,p,0!1@Lo
31LoD1DLo1DLo

21D#IPLi f N
N~0!

1@Lo
21LoDLo

211D1DLo
21DLo

21#IPR fN
N~0!%. ~38!

To appreciate the resummation that is done later, we summarize the results for terms up toj55.

j50:

f ~r ,p,0!;

j51:

t

1!
@Lof ~r ,p,0!1IPLi f N

N~0!#;

j52:

t2

2!
@Lo

2f ~r ,p,o!1LoIPLi f N
N~0!1IPR fN

N~0!#;

j53:

t3

3!
@Lo

3f ~r ,p,0!1DLof ~r ,p,0!1~Lo
21D!IPLi f N

N~0!1~Lo1DLo
21!IPR fN

N~0!#;

j54:
t4

4!
@Lo

4f~r,p,0!1~LoDLo1DLo
21DLo

21DLo!f~r,p,0!1~Lo
31LoD1DLo1DLo

21D!IPLi f N
N~0!

1~Lo
21LoDLo

211D1DLo
21DLo

21!IPR fN
N~0!];

j55:

t5

5!
@Lo

5f ~r ,p,0!1~Lo
2DLo1LoDLo

21LoDLo
21DLo1DLo

31D2Lo1DLo
21DLo

21DLo
21DLo

21DLo! f ~r ,p,0!

1~Lo
41Lo

2D1LoDLo1LoDLo
21D1DLo

21D21DLo
21DLo1DLo

21DLo
21D!IPLi f N

N~0!

1~Lo
31Lo

2DLo
211LoD1LoDLo

21DLo
211DLo1D2Lo

211DLo
21D1DLo

21DLo
21DLo

21!IPR fN
N~0!].

By the procedure described above, all the terms may be written. It is then possible to regroup the terms, collect them, and
finally write a resummation. We write the result of such a regrouping and summation:

1436 54A. MURIEL AND P. ESGUERRA



f ~r ,p,t !5(
j50

`
t j

j !
Lo
j f ~r ,p,0!1(

j51

`
t j

j !
Lo
j21IPLi f N

N~0!1(
j52

`
t j

j !
Lo
j22IPR fN

N~0!1 (
q53

` F (
j5q

`
t j

j !
Lo
j2qSqf ~r ,p,0!

1(
j5q

`
t j

j !
Lo
j2qTqIPLi f N

N~0!1(
j5q

`
t j

j !
Lo
j2qUqIPR fN

N~0!G , ~39!

where

S35DLo ,

S45DLo
21DLo

21DLo5DLo~Lo1Lo
21D!Lo ,

S55DLo
31D2Lo1DLo

21DLo
21DLo

21DLo
21DLo

215DLo~Lo1Lo
21D!2Lo ,

Sq5DLo~Lo1Lo
21D!q23Lo ,

T35D,

T45DLo1DLo
215D~Lo1Lo

21D!,

T55DLo
21D21DLo

21DLo1DLo
21DLo

21D5D~Lo1Lo
21D!2,

Tq5D~Lo1Lo
21D!q23,

U35DLo
21,

U45D1DLo
21DLo

215D~Lo1Lo
21D!Lo

21,

U55DLo1D2Lo
211DLo

21D1DLo
21DLo

21DLo
215D~Lo1Lo

21D!2Lo
21,

Uq5D~Lo1Lo
21D!q23Lo

21. ~40!

It is easy to surmise the formula for allSq ,Tq ,Uq . Note that each of the above operators contains second derivatives with
respect to momenta from the left, an important property that we will exploit later.

Following the technique in Refs.@1–3#, we rewrite the infinite sums inj as telescoping time integrals. Then we use Eqs.
~29!–~39! to simplify IPLi f N

N(0) andIPR f N
N(0) to get

f ~r ,p,t !5 f ~r2pt/m,p,0!1n0E
0

t

ds1 exp~s1Lo!E dr8
]V~r2r 8!

]r

]

]p
f 2
1~r ,r 8,p,0!

2E
0

t

ds1E
0

t

ds2 exp~s2Lo!n0E dr8
]V~r2r 8!

]r

]

]p S pm ]

]r
f 2
1~r ,r 8,p,0! D

2E
0

t

ds1E
0

t

ds2 exp~s2Lo!n0E dp8E dr8
]V~r2r 8!

]

]

]p S p8

m

]

]r 8
f 2
2~r ,r 8,p,p8,0! D

1n0E
0

t

ds1E
0

t

ds2 exp~s2Lo!E dr8S ]V~r2r 8!

]r D 2S ]2

]p2
f 2
1~r ,r 8,p,0! D

1n0
2E

0

t

ds1E
0

t

ds2 exp~s2Lo!E dr8E dr9
]V~r2r 8!

]r

]V~r2r 9!

]r S ]2

]p2
f 3
1~r ,r 8,r 9,p,0! D

3 (
q53

` E
0

t

ds1E
0

t1
ds2•••E

0

sq21
dsq exp~sqLo!FSqf ~r ,p,0!1n0TqE dr8

]V~r2r 8!

]r

]

]p
f 2
1~r ,r 8,p,0!

2n0UqE dr8
]V~r2r 8!

]r

]

]p S pm ]

]r
f 2
1~r ,r 8,p,0! D2n0UqE dp8E dr8

]V~r2r 8!

]r

]

]p S p8

m

]

]r 8
f 2
2~r ,r 8,p,p8,0! D

1n0UqE dr8S ]V~r2r 8!

]r D 2S ]2

]p2
f 2
1~r ,r 8,p,0! D

1n0
2UqE dr8E dr9

]V~r2r 8!

]r S ]V~r2r 9!

]r

]2

]p2
f 3
1~r ,r 8,r 9,p,0! D G . ~41!
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The simplest sum yields a displacement off (r ,p,0) into
f (r2pt/m,p,0), simple ballistic propagation.
Insofar asSk , Tk , andUk may be written down, Eq.~41!

is exact, and uses only one assumption, that the full distribu-
tion function possesses exchange symmetry between the
N21 particles whose momenta and coordinates are projected
out. Curiously enough, the particle we are looking at, labeled
by the index 1, could possess properties different from the
N21 others. This is an interesting possibility that could be
explored much later. Note that for simplicity, we have now
put Lo52(p/m)]/]r .

Now we clarify the normalization needed to make all our
variables consistent with conventional definitions. From the
definitions of the projected probability distributions, we have

f 1
N~r 1 ,p1 ,p2 ,...,pN ,t !

5P1f N
N~r 1 ,r 2 ,...,r N ,p1 ,p2 ,...,pN ,t !

5
1

VN21 E dr2•••drNf N
N , ~42!

whereV is the volume of the system, which up until this
point we consider finite. As defined earlier, the subscripts
refer to the coordinate label, while the superscripts refer to
the momentum labels. There areN particle momenta, and 1

particle coordinate labels in the single-particle projected dis-
tribution function. Similarly, using the same notation, we
have

f 2
N~r 1 ,r 2 ,p1 ,p2 ,...,pN ,t !5 f 2

N~r 1 ,r 2 ,p
N,t !5P2f N

N~ t !

5
1

VN22 E dr3dr4•••drNf N
N~ t !,

~43!

f 3
N~r 1 ,r 2 ,r 3 ,p1 ,p2 ,...,pN ,t !5 f 3

N~r 1 ,r 2 ,r 3 ,p
N,t !5P3f N

N~ t !

5
1

VN23 E dr4dr5•••drNf N
N~ t !.

~44!

The normalization of the momentum distribution functions,
for one or many particles, do not need much attention. For
example, we simply define the one-particle momentum prob-
ability as*dp w(p,t)51 so that the momentum distribution
function is dimensionally inverse momentum. However, to
see the effect of the projection operators in the normalization
of the density probabilities, consider the result of integration
over the remaining momentum in Eq.~39!, and use the defi-
nition of D5b¹ p

2,

f ~r ,t !5E dp f~r2pt/m,p,0!1n0gE dpE
0

t

ds1 exp~s1Lo!E dr8
]V~r2r 8!

]r

]

]p
f 2
1~r ,r 8,p,0!

2n0gE dpE
0

t

ds1E
0

s1
ds2 exp~s2Lo!E dr8

]V~r2r 8!

]r

]

]p S pm ]

]r
f 2
1~r ,r 8,p,0! D

2n0gE dpE
0

t

ds1E
0

s1
ds2 exp~s2Lo!E dp8E dr8

]V~r2r 8!

]r

]

]p S p8

m

]

]r 8
f 2
2~r ,r 8,p,p8,0! D

1n0
2g2E dpE

0

t

ds1E
0

s1
ds2 exp~s2Lo!E dr8E dr9

]V~r2r 8!

]r

]

]p S ]V~r2r 9!

]r

]

]p
f 3
1~r ,r 8,r 9,p,0! D

1n0g
2E dpE

0

t

ds1E
0

s1
ds2 exp~s2Lo!E dr8

]V~r2r 8!

]r

]

]p S ]V~r2r 8!

]r

]

]p
f 2
1~r ,r 8,p,0! D , ~45!

where we have inserted the coupling parameterg in front of
the pair force as a bookkeeping tool. By integration over the
momentum, the contribution of the rest of the infinite series
vanishes for reasonable momentum distributions. Notice that
in contrast to the BBGKY hierarchy@6# of equations—with
its well-known closure problem—and the resulting need to
know theN-particle distribution function to contract exactly
to a one-particle distribution function by any of the tech-
niques used so far@6#, we provide closure by requiring that
we know only the three-particle distribution function, and
only at the initial condition at that. That we require only the
three-particle distribution function instead of the full
N-particle distribution function is due to the use of pair
forces.

In this paper, we consider only factored initial conditions
given by

f 3
N5 f 1f 1f 1)

i51

N

w~pi ! ~46!

and use the spatial normalization

E drNf N5E dr1E dr2•••E drNf N~r 1 ,r 2 ,...,r N!51

~47!

to give from Eqs.~41!–~43! the following conventional spa-
tial density distributions:
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r~r 1!5E drN21f N~r N!5E dr2•••drNf N~r 1 ,r 2 ,...,r N!

5VN21f 1~r 1!, ~48!

r~r 1 ,r 2!5E drN22f N~r N!5E dr3•••drNf N~r 1 ,r 2 ,...,r N!

5VN22f 2~r 1 ,r 2!, ~49!

r~r 1 ,r 2 ,r 3!5E drN23f N~r N!

5E dr4•••drNf N~r 1 ,r 2 ,...,r N!

5VN23f 3~r 1 ,r 2 ,r 3!. ~50!

Using the above probability distributions, we may rewrite
Eq. ~44! as

r~r ,t !5E dp r~r2pt/m,0!w~p,0!1n0gVE dpE
0

t

ds1 exp~s1Lo!E dr8
]V~r2r 8!

]r

]

]p
r~r ,0!r~r 8,0!w~p,0!

2n0gVE dpE
0

s1
ds1E

0

t

ds2 exp~s2Lo!E dr8
]V~r2r 8!

]r

]

]p S pm ]

]r
r~r ,0!r~r 8,0!w~p,0!w~p8,0! D

2n0gVE dpE
0

s1
ds1E

0

t

ds2 exp~s2Lo!E dp8E dr8
]V~r2r 8!

]r

]

]p S p8

m

]

]r 8
r~r ,0!r~r 8,0!w~p,0! D

1n0
2g2V2E dpE

0

s1
ds1E

0

t

ds2 exp~s2Lo!

3E dr8E dr9
]V~r2r 8!

]r

]

]p S ]V~r2r 9!

]r

]

]p
@r~r ,0!r~r 8,0!r~r 9,0!w~p,0!# D

1n0g
2E dpE

0

t

ds1E
0

s1
ds2 exp~s2Lo!

3E dr8
]V~r2r 8!

]r

]

]p S ]V~r2r 8!

]r

]

]p
r~r ,0!r~r 8,0!w~p,0! D . ~51!

Note that rigorously, from all previous work@2# and this one,
we used the shortcut notationn05(N21)/V and
n 0
25(N21)(N22)/V2 so that, in fact, the volume depen-

dence of Eq.~50! is not there. What is constantly present is
the total number of particlesN. We thus get the interesting
observation that one could define a new coupling parameter
gN for a many-body system, and define a new weak-
coupling limit N→`, g→0, which we only mention paren-
thetically, without using it in this work. With this explana-
tion of the normalization convention, all our previous results
are consistent with conventional normalization definitions. In
Eq. ~50!, r is dimensionally inverse volume, making it con-
sistent with the normalization given by Eqs.~41!–~43!. This
statement may be checked by dimensional analysis of Eq.
~50!. We will user from now on.

To simplify Eq. ~50!, we may follow these steps:~1! Do
the space integrations first over the forces.~2! Shift all vari-
ables using the equations

expS 2ap
]

]r DF~r ,r 8!5F~r2ap,r 8!expS 2ap
]

]r D ,
~52!

expS 2ap
]

]r D ]

]p
H~r ,p!5F ]

]p
H~r2ap,p!

1ap
]

]r
H~r2ap,p!G

3expS 2ap
]

]r D .
~3! Pull out, only when possible, all differentiations with
respect to spatial coordinates to the left, paying attention to
the commutativity of operations.~4! Do the integrations over
time. ~5! Perform the integration over momentum. In the
above procedures,~4! and ~5! may be interchanged.

IV. TIME EVOLUTION OF THE ONE-DIMENSIONAL
GRAVITATIONAL GAS

To begin, we use the one-dimensional form of Eq.~51!,
and put

]V~r2r 8!

]r
5g«~r2r 8!, ~53!
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When Eq.~53! is substituted in Eq.~33!, one gets

b5
~N21!g2

L E dx8«2~x2x8!5~N21!g2

for any L ~length! that takes the place of the volumeV. In
this work, we do not take the thermodynamic limit, sob is in
fact finite.

Second, we assume an initial factored distribution of the
form

r3
1~r ,r 8,r 9,p,0!5r~r ,0!r~r 8,0!r~r 9,0!w~p! ~54!

and consider the example of a ‘‘petite-bang’’ universe with a
nonsingular explosion.

We use the initial Gaussian space and Maxwellian distri-
bution

f ~r ,p,0!5r~r !w~p!, ~55!

where

r~r !5Aa

p
exp~2ar 2!,

w~p!5Ab

p
exp~2ap2!

and evaluate Eq.~51! term by term, labeling the terms by
subscripts according to the order of appearance,
r5r01r11r21r31r41r51r6:

r05A ab

p~b1at2/m2!
expF2ar 2H 12

at2

m2~b1at2/m2! J G , ~56!

r15
~N21!gbm

2Ap
FAb

p E dp erf2@Aa~r2pt/m!#exp~2bp2!2erf2@Aar #G , ~57!

r252
4a~N21!g

m
Aab

p2 E
0

t

ds1E
0

s1
ds2E dp~122br2!exp@2br2#~r2ps2 /m!erf@Aa~r2ps2 /m!#

3exp@2a~r2ps2 /m!2#

5
4~N21!gAab

p E dp H 12 Ferf~Aar !exp~2ar 2!t2E
0

t

ds1 erf~Aa@r2ps1 /m# !exp~2a@r2ps1 /m#2!G
1

1

& F E
0

t

ds1 erf~Aa@r2ps1 /m# !2erf~Aar !tG J ~122bp2!exp~2bp2!, ~58!

r35
~N21!~N22!g2Aab

p E
0

t

ds1E
0

s1
ds2E dp@2b2p221#erf2@Aa~r1ps2 /m!#exp@2a~r1ps2 /m!2#exp~2bp2!

5
~N21!~N22!g2m

6
Ab

p E dp
~2b2p221!

p
exp~2br2!H @erf~Aar !#3t2E

0

t

ds1@erf~Aa@r1ps1 /m# !#3J , ~59!

r450, ~60!

r55
n0
2g4V2

3 E dpAb

p
~2b2p22b!e2bp2

^ E
0

t

ds1 H erf3FA a

p3 @2Ape2r41pr2r2 erf~r !#G
2erf3FA a

m2p3 @2Apme2r41pmre2r2 erf~r !#1p3/2ps1G J , ~61!

r65n0
2g4V2E dp~2b2p22b!Ab

p
e2bp2

m

aApp2
H 2Apat~p2mr/t !erfAa~r2pt/m!1mAa~e2a~r2pt/m!22e2ar2!

1aAp~pt2mr!erf~Aar ! J . ~62!
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Note that ast→`, there is an irreversible approach to
uniformity. It is for this reason that we introduce the concept
of semiergodicity, ergodic only in spatial coordinates. In cos-
mological terms, this ‘‘petite universe’’ is an open universe.
We have found this to be true for other initial momentum
distributions. Exact statements about the behavior of the mo-
mentum distribution for this system is not so straightforward
and will be treated elsewhere. Nevertheless, despite this
semiergodicity, the short-time behavior is quite interesting.
Microstructures naturally develop in time; this is an intrigu-
ing hint as to the development of substructures in three-
dimensional gravitational systems@7#. These microstructures
may be seen by expanding the time integrand in Taylor se-
ries, then integrating the results term by term. For example,
up to second order in time, we get the following:

r1'
2~N21!gat2

mAb
@exp~2a2r 4!/p2Aar erf~Aar !

3exp~2ar 2!/Ap#, ~63!

which demonstrates the growth of the substructure. We post-
pone a more exhaustive numerical study of the formation and
development of substructures or microstructures found else-
where @8# and in this example to later work@9#. The sub-
structures that we have so far found by starting with our
analytic treatment are all irreversible.

V. SUMMARY AND PROSPECTS

We have introduced a formula for the time evolution of
the density of an arbitrary classical many-body system using
the method of iterated projections. In its final form, the for-
mula no longer has any trace of projection operators, and

may be immediately used for many physical applications. As
a first test case, we have used it for a favorite toy system in
stellar dynamics, providing some insight into the evolution
of a one-dimensional gravitational system. In the course of
this study, we introduce the concept of ‘‘semiergodicity,’’
pointing to some examples of irreversible systems that ex-
emplify a Prigogine conjecture@10#. It would be interesting
to see if a ‘‘semiergodic’’ system as introduced in this paper
is in fact fully ergodic. That might offer some interesting
consequence for the proof that some systems are indeed er-
godic. In another work, we will describe the time evolution
of the momentum distribution function; only at that point
could one demonstrate the consistency of our results with
well-known virial theorems in stellar dynamics@11#.

We have elsewhere@12# applied our time evolution equa-
tion and used it to resolve some difficulties on the conver-
gence of transport coefficients. We now raise the possibility
of using our time evolution equation for three-dimensional
problems, in stellar dynamics, in particular. Among such
studies will be the time evolution of pair correlations, using
projection operators that integrate all but two spatial coordi-
nates. Such an approach may be applied to the evolution of
binary stars in globular clusters@13#. But as the specification
of the initial conditions affords us the freedom to vary the
problem that we address, we think that there will be many
more applications of our time evolution equation to many-
body physics.
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