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Exact time evolution of the density of a classical many-body system:
The open one-dimensional gravitational gas
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We introduce an exact equation for the time evolution of a classical many-body system, and apply it to the
one-dimensional gravitational gas. An irreversible approach to a final density distribution is found for a large
class of initial momentum distributions, allowing us to introduce the idea of ‘“semiergodicity.”
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I. INTRODUCTION dimensional gravitational gas, we offer in the last section
some suggestions on the application of our general approach
An incomplete statistical description of a classical many-to three dimensions.
body problem may be expressed by the time evolution of the
one-particle distribution functiori(r,p,t), wherer and p Il. APPLICATION OF THE METHOD
represent the coordinates and momentum of one particle. To OF ITERATED PROJECTIONS
complete the description, it would be desirable to specify the ) o
correlation functions as well, but given the severe difficulty The process of contrac_tmgNthe description from the
of specifying the behavior of aN particles of a system, we N—partu;le distribution functionf [N spatial coordlnates
choose to start first witti(r,p,t). To achieve this goal, we (SubscriptandN momenta(supe{sgrlpt] to the one-particle
adopt some formal results reported earier 3] in both clas-  distribution function,f(r,p,t)=f 1, is accomplished in two
sical and quantum systems. Furthermore, in this work, W@tNeps. NFlrst, we derive an exact formal solution for
limit ourselves to a one-dimensional gas consisting of idend 1(,P 1), and then integrate over all momenta but those
tical particles that interact by gravitation, the favorite toy beIongmNgilto one particle, effected by the operator
system in stellar dynamics. We find that for some initial!1=/dpP" . The reason for doing this in two steps is that
conditions, the system irreversibly approaches some spati&l€ intégral over unwanted space coordinates may be defined
density distribution. We suggest to call such a systenfS & Projection operator, while integration over the momenta
“semiergodic”—ergodic only in spatial behavior. We also 'S Not @ projection operator.
attempt to show that the formation of microstructures occurs L€t us define
quite naturally in the one-dimensional gravitational gas. 1
The mathemat_lcal metho_q we will use is, to our knowl- Pk:QTR f drN-k )
edge, new even in nonequilibrium statistical mechanics, so
we find it appropriate to quickly reexpress our method of . . I
iterated projggtiorr)\s for ap;)qlicatign to stpellar dynamics. So inwhereQ is the vo!ume of the system. This volume W'l! dis-
Secs. Il and lll, we offer a summary of the procedure goappear from our_fmal results once we properly normalize the
arrive at an equation for the exact time evolution of the den_dlstnbunon_functlo.ns. .
sity of a system. After the formal presentation, we end up Whenk=0, P, integrates out all space coordinates, and
with a final formula that has no more bearing with the one gets, for example,
method of iterated projections, with wide applicability to (P =Py, 3)
many systems.
In Sec. IV, we reduce the formula to the case of onethe N-particle momentum distribution function. From Eq.
dimension, then we specialize to the gravitational pair poten¢3), one can define
tial in one dimension given by

<P(Pat):|1¢N:j dpN ey . (4)
V=ry|ri—ril, 1)

In the past, projection techniques have not resulted in nu-
wherey is a constant for identical particles. We consider onemeric results, as may be verified by examining the literature
initial condition representing the one-dimensional equivalent5]. By contrast, we carry out our operator formalism to pro-
of a nonsingular “petite-bang” initial condition, which re- duce numerical results. To show this, it is worthwhile first to
duces in the appropriate limits to a singular “petite bang” present some formal result$—3] applied to nonequilibrium
[4], or “petite collapse.” This example is a “cosmological” statistical mechanics.

must for any claimed exact time evolution equation. Having Following a method utilized in several formgal—3],
established the use of the exact equations for the onewhich goes well beyond the usual approach using projection
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techniqueg5], one can write the formal solution fd?fy,
which for now we simply write a® fy="fp:

fe=g+h, g=2 gm, h=2> hy, (5)
m=0 n—-1

where

t
9o=F(t,0fp(0), hy= Jod% F(t,51)PLG(s1,0)Qfn(0),

(6)
t s

Im= Jodsljoldsz J(t,51,52)Om-2(S2), 7)
t s,

h,= j0d51f0 ds, J(t,s;,S.)h,_2(Sy), ®)

‘J(tlsl!SZ): F(t!sl) PO(LO+ Li)G(SlISZ)Q(LO+ Li)1
9

F(t,s)=e"PL G(sy,s,)=e517%2RL (10

Q=1-P, (11
L=L,+L,,
N
.5 b9
Lo= ,—Z‘l m dr;’
L.:l 3V(|rj_rk|)( J _) (12)
b2 % ar; p; Ipy)’

We now perform the following general procedure analo-
gous to those used for quantum systéi8] but not detailed

in the classical versiof2]:
Step 1.First, observe thaB(s;,s,)QL=QLG(s;,S,) SO

t s1
gmzf dslf ds, F(t,51)PLQLG(S1,S2)Um_2(S>).
0 0
(13

Step 2.Differentiate Eq.(13) two times:
Gr=PLant PLOL [ d5,G(t52)gn o(52), (14
9m=PLgn+PLQLGN»
+PLQLQLfotdszG(tySz)gm—z(Sz)

or
gm—[PL+PLQL(PL) *]g/,— PLQLGy >
+PLQLg,=0, (15
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(PL)‘1=JOmdw e “PL (16)

Step 3.Sum Eq.(15) from m=0 to infinity to give
g"—[PL+PLQL(PL) g’

=go—[PL+PLQL(PL) *]gg+PLQLG=0,

17
where we have used the definition fgg in Eq. (6).
Step 4.Set the boundary conditions
9(0)=1p(0),
(18)

g'(0)=g,(0)=0.

Step 5.Follow a similar procedure fohn, to give
t
h’=h;+PLh+ F’LQLJ ds;,G(t,sp)h(sz), (19
0

h"—[PL+PLQL(PL) ]h’

=h]—[PL+ PLQL(PL)fl]hi—i— PLQLh;=0,
(20
again using the definition in Eq8).
The fact that the inhomogeneous terms in E49) and

(20) are zero is a rigorous property for aRy
Step 6.Set the boundary conditions

h(0)=0,
h’(0)=h,(0)=PLf(0). (21
Step 7.Evaluate
PL+PLQL(PL) '=PL+PL(1-P)L(PL)?
=—PL=PL*PL) ! (22)
so that

g"-PL*PL) 'g’=0 and h"—PL*PL) *h'=0.
(23

With the boundary conditions given by Eq4.8) and (21),
the solutions of Eqs23) are

g="fp(0)+[exp(tK)—1]K tPLfy(0), (24)

h=[exp(tK)—1]K PL(1—P)f\(0). (25)
Let us putP=P,=(1/QN" 1 fdrN"1. With this projection
operator, we find that the exact solution for the function

fp (t)=FY(ry,p",t) from Eq.(5) is given by

fp, =f(r,pN,0)+[exptk)—1]JK*P1Lf\(0), (26)

where if necessary, we use the Feynman definition for thavhereK= PL%(PL) L.

inverse operator

Integrating this over all momenta but one, we get
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N1 . Equation(32) is shown by using the fact that the integral of
f(r,p,t)=f(r,p,0)+f dp™ “[exp(tK) —1]K™"P;Lfn(0),  the force on a particle over all space is zero.

(27) Next, we look at
which we will now simplify. F,l_zl:,:(pl_cz)Jr PL,L +PLLy+ PLiZ)P
lll. ONE-PARTICLE DISTRIBUTION FUNCTION =[L2(1)+Lo(1)PLi+PLL,+PLZ]P.

We first rewrite Eq(27) as In the second term, we again encourfdr;P=0 and in the

o iKJ’l third termL, and P commute, to make it zero as well, al-
f(r,p,t)="(r,p, o>+|2 ——PLfN(0), (28 lowing us to write
192
whose sum we now decompose and simplify term by term. |P|_2P:|(PL§+ PLiZ)Pz(Lg(l)er —2) P,
We follow the technique in Ref$1-3], and arrive at some ap

expressions for each term of the series. Although somewhat
repetitive, it is important to present the details because the (N 1) [aV(r—r

operator technigues used in this paper are uncommon in clasb=
sical physicsj=1

N(r—r")]?
NnOJ dr’[(T)},

(33
t
Il IPLfN(O) 1 [Lo(l)f(r,p,O) whereny=(N—1)/Q. b is in general a function of and
’ the location of the walls of the vessel, but when an infinite
g\/(r_r ) @ system is considered, it may turn out to be just a constant, as
+nof dr’' ———— o f3(r.r'.p,0)|, in analogous evaluations of similar expressions in virial ex-

pansions. We have not gone to the thermodynamic limit and
(299 we should remember this subtlety. Accordingly, we should

not always treat it as a constant when operators act on it, but
wheren,=(N— 1)/, the average density for the system andj, this paper, all the operators we use are such that it is

Lo(1) is now simply a one-particle expressigr=2: effectively a constant.
2 2 With the definition Eq(33), we can rewrite Eq(31) as
IPL2fN N(0) =57 [L2(1)f(r,p,00+IPMFN(0)],
21 2! 3 t3

t
(30) 3 I(PL?)(PL) " *PL2fN(0)= 3 [Lo(1)+bViLo(1)]

whereM=L,L;+L,L,+L2 j=3: X[IPLZ+ 1PMIEN0)
t3 34
3 I(PL?)(PL) " *PL2fN(0) 39
and from now on, we may write

3

_ 2 -1 2 N
=37 (PLO(PL) T {PLo+PMITN(O). IKP=1PL%(PL) " 'P=[Lo(1)+bViL  (D)]IP,

(31 (35

We are now obliged to simplify(PL?)(PL) P since this
expression will recur in later expressions. The rightm®@st
makes everything to the right of the expression a function o
only one coordinate, where we have suppressed the particle
label 1. Now from Eq(16),

where we give the usual Feynman interpretation for the in-
yerse operator.
Finally for j =3, we can write

3
37 (PL)(PL)"1PLR(0)

(PL)—lpzf do exp—wPL)P t3
0 — 3 2
=37 {[Lo+bV;Lo]f(r.p,0)

(-wPL) wPL)' +[Lo+bV2L, TIIPMEN(O)}, (36)

f dwz
) . where we have now removed the indgy for the free par-
f dwz P=(PL,) "P. ticle operatolL, as is now clear that all future occurrences of
the operator refer to a single particle.
(32 The expressionPMf X may still be simplified:
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IPMfN=IP(LoLi+LiLy+L2)fN(0)=L,IPLfN+IPRfN=—n

V —
L i fdr M—fz(rr ,p,0)

Omoar or

, oV(r—r’ ) 07 , (9V(r—l' ) d (p' @ , ,
_nofd or m(?r falrr’ p.0) _”Ofdp fd o ap | m ar7 1201 Pp"0)
NVNIr—=r")y @ [V(r—r1") d
*”Of dr’ fdr" gp Fr 1.0

ar ap ar
[ V(r=r")
+nof dr ( T

d
ap

aNVr—=r') o
ar p

f%(r,r’,r”,p,O)). (37)

We write down thej =4 term to exhaust all the tricks that one could use, and introduce the nofetibiVv ,2):

4 t4 t4 ~ t4 ~
a IK3PL= i IKPK2PL= 21 (Lo AL, H2IPK2PLIN(0) = 21 (Lo ALg H21PL2EN(0)

t4
=0 {[La+LoALy+ALZ+ AL, PALIF(r,p,0)+ L2+ L AL M+ A+ AL TALS IPMEN(0)}

4
=1 (L4 LoALy+AL2+ALSYALIf(r,p,0) +[ L3+ L A+ AL+ AL, *ATIPL;fR(0)

HIL2+LAL M+ A+ AL TALSIPRIN(0)]. (38)

To appreciate the resummation that is done later, we summarize the results for termis=Up. to

f(r,p,0);
j=1:
t N
17 [Lof (r,p,0) +IPLfR(0)];
j=2:
2
[L2f(r p,0)+LoIPLifN(0)+IPRN(0)];
j=3:
3
a[|_§f(r,p,0)+A|_0f(r,p,0)+(|_§+A)|P|_ifm(0)+(|_o+m_ HiPRI(0)];
=4
t4
E[Lgf(r,p,0)+(LoAL0+AL§+AL;1ALO)f(r,p,O)+(L§+ LoA+ALy+AL,MA)IPLFN(O)
H(L2HLAL M A+ AL TAL HIPRIN(O)];
j=5:

t° _ _ L

5 [L3F(r,p,0)+ (L2ALy+ LoALZ+ LoAL  TALy+ AL+ AZL g+ AL TALZ+ AL PAL AL ) f(r,p,0)
F(La+L2A+LoALy+LoAL T A+ALZ+ A%+ AL AL+ AL TAL, A IPLEN(O)
F (L3 L2AL M Lo A+ LoAL S PAL T+ AL+ AL M+ AL TA+ AL PAL S TAL S HIPRN(0)].

By the procedure described above, all the terms may be written. It is then possible to regroup the terms, collect them, and
finally write a resummation. We write the result of such a regrouping and summation:
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f(r,p,t) =2 ]— Lif(r,p,0)+ >, j—,u;llPLifN(OHE j—,meRfmon {E 77 Lo Saf(r.p.0)
=0 =1 j! = J! §=3 |i=q ]!
-t i—d N o U i—q N
+qu J.—!L0 Tq|PLifN(0)+j§q J.—!L0 Ul PRN(O) |, (39
where

S3=AL,,
=ALZ+AL;'AL,=ALo(Lo+ Lo *A)L,,
Ss=ALJ+AZL o+ AL ALZHAL AL TAL P =ALo(Lo+ Lo MA)%L,,
Sy=ALo(LotLgtA)375L,,
T3=A,
Ti=ALo+AL '=A(Ly+L, 1),
To=AL2+AZ+AL AL +HAL AL P A=A(L,+ L, 1A)2
Tq=A(Lo+LgtA)473,
Us=AL %,
Us=A+AL AL P =A(Lo+L ALY,
Us=ALy+ AL M+ AL A+ AL PAL AL T =A(Lo+ L )2t
Ug=A(Lo+LgtA)a7 3L (40)
It is easy to surmise the formula for &},,T,,U,. Note that each of the above operators contains second derivatives with
respect to momenta from the left, an important property that we will exploit later.

Following the technlque in Ref$1—3], we rewrite the infinite sums in as telescoping time integrals. Then we use Egs.
(29—(39) to simplify IPL;f N(0) andIPRfN(0) to get

(—r)a

t
f(r,p,t)=f(r—pt/m,p,0)+n0f ds; ex;ileo)J dr’ i — f2(r r',p,0)
0

t t JoN(r=r") 9 (pad , |
—fdslj’ ds, exr(szLo)nOJ dr' ——— — | == f3(r,r’,p,0)
0 0 ar ap

m ar
Jtd J’td . J‘d ,Jd,5V(r—r’) d (p' o 2 ) ' o
= | 981 | dsz expssloing | dp’ | dr ———— Z 0| {02 fa(rr.p.p’0)

t t oV(r—
+nojodslf0dsz exp(szLo)f dr’ (UT”) (a > fz(r r',p, 0))

+n0f dslf ds, exp(s,L o)fdr fd y MUZT) V) ( —— f3(r, ',f",IO,O))
ar ar ap
‘3 [as [ Mase [ s, exrrsqLoﬂSqf(r,p,ownquf arr 0 % i po
q=3 Jo 0 0 or ap
NT—r'") d ,oNV(r=r") a (p"a , , ,
—nquJ dr’ a—r%(ﬁé_rfz(” pO))—nOU fdp jd —r%(mﬁfz(” ,p,p",0)
+n0uqf dr’(w)z(&—zzfé(r.r’,p,o))
ar Jp

2, fd ,fd"aV(r—r’) N(r—r") 9? He o a1
+ngUq | dr r T o o2 3(r,r',r",p,0) | |. (41)
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The simplest sum yields a displacement f¢f,p,0) into  particle coordinate labels in the single-particle projected dis-

f(r—pt/m,p,0), simple ballistic propagation. tribution function. Similarly, using the same notation, we
Insofar asS,, Ty, andU, may be written down, Eq41)  have

is exact, and uses only one assumption, that the full distribu-

tion function possesses exchange symmetry between thd>(r1,r2,P1,Pa,....Pn 1) =F5(ry,ro,pN,t)=P,fN(t)

N—1 particles whose momenta and coordinates are projected

: . ; 1
out. Curlously enough, the particle we are Iogklng at, labeled == f dradry,-- -derN(t)
by the index 1, could possess properties different from the
N—1 others. This is an interesting possibility that could be (43)

explored much later. Note that for simplicity, we have now
putL,=—(p/m)alar.

fNr Yr rr ] ’ yrrey !t :fNr 1r 1r ] N,t :P th
Now we clarify the normalization needed to make all our 3(r12,13,P1, P2, PN D =T5(112,13, P70 = Pafin(t)

variables consistent with conventional definitions. From the N

definitions of the projected probability distributions, we have T QN3 drydrs:--dryfy(t).

fT(rliplvaV"!pN!t) (44)
=PyfN(r1,F 2,0 NP1, P2 PN L) The normalization of the momentum distribution functions,

for one or many particles, do not need much attention. For
1 N example, we simply define the one-particle momentum prob-
QN1 f drp---dryfy, (420 apility asfdp ¢(p,t)=1 so that the momentum distribution
function is dimensionally inverse momentum. However, to
where Q) is the volume of the system, which up until this see the effect of the projection operators in the normalization
point we consider finite. As defined earlier, the subscriptof the density probabilities, consider the result of integration
refer to the coordinate label, while the superscripts refer tomver the remammg momentum in EQ9), and use the defi-
the momentum labels. There axeparticle momenta, and 1 nition of A= bV

t NIr—r') g
f(r,t)=f dp f(r—pt/m,p,0)+noyf dpf ds; ex;ileo)f dr’ T_f (r,r’,p,0)
0
jd Jtd Fld L Jd NIr—=r') 9 af O)
Noy | dp | ds; | S, eXp(sal,) r(9—r% a2 2(r,r',p,0)
fdftd Fld . fd’fd N(r—r")y ¢ ’0f , /o
~Noy | dp | dsy | S, exp(s;Lo) | dp C o ap\mar 5(r.r".p,p’,0)
fd Jd j d Jd fd"aV(r—r) a (V(r—r") &fl o
+ngy? | dp| ds; Sz eXp(sal,) | dr P o ap 3(r,r',r",p,0)
. ZJ'd Jtd J'sld L jd JoV(r=r") g [NV(r—r') a b0 A5
n07 p 0 Sl 0 SZquSZ 0) r &r % 0—,r ap ( 1 1p1 ) 1 ( )
|
where we have inserted the coupling parameter front of In this paper, we consider only factored initial conditions

the pair force as a bookkeeping tool. By integration over thegiven by
momentum, the contribution of the rest of the infinite series
vanishes for reasonable momentum distributions. Notice that N
in contrast to the BBGKY hierarchy6] of equations—with fszflflfli:Hl ¢(pi) (46)
its well-known closure problem—and the resulting need to

know theN-particle distribution function to contract exactly ang use the spatial normalization

to a one-particle distribution function by any of the tech-

nigues used so fdi6], we provide closure by requiring that
f derN—f drlj’ dr, j dryfn(ryra,...ry)=1

N

we know only the three-particle distribution function, and

only at the initial condition at that. That we require only the 47
three-particle distribution function instead of the full

N-particle distribution function is due to the use of pair to give from Eqs(41)—(43) the following conventional spa-
forces. tial density distributions:
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P(rl):J drN_lfN(rN):j drp---dryfn(ry,ra,....rn) P(r1-r21r3):J drN_st(rN)
=N .(ry), 48
l( l) ( ) :Jdr4'"derN(rl,rz,...,rN)
=ON"35(r,r2,r3). (50
P(rl,rz):f drN_sz(rN):j drg---dryfn(ro,ra,....ry)
= N2 (1, 1,), (49) Using the above probability distributions, we may rewrite
Eq. (44) as
|
t aNr—=r') 9 .
p(r,t)=fdp p(r—pt/m,O)qo(p,OHnoyﬂf dpfodsl exp(leo)fdr T—p(r 0)p(r",0¢(p,0)
aNVr—=r') 9 d ,
—noynfdpf dslf ds, exrxszLo>fdr —a 2 o(1,0p(r" 0e(p.0 (PO

(r=r'") o "a
—nonfdpf dslf ds, exp(szLo)fdp fdr —r%(%Wp(r,O)p(r’,O)cp(p,O))

2.202 51 ‘
+ngy°Q“| dp . ds; 0d52 exp(s,L,)

; Nw—r'")y g [oV(r—r") d ;
fdr fd i ap o aplP (O 0p(r" 0 ¢(p.0)]

t S
+n072f dpfodslfoldsz exp(s;L,)

S V(r=r') g (avu—r') 7 , )
x [ ar S R 000, 010(p.0)| 5D

Note that rigorously, from all previous wofR] and this one, a\ 9
we used the shortcut notatiomy=(N—1)/Q and l{—ap —) — H(r p)—[— H(r—ap,p)
n3=(N—1)(N—2)/Q? so that, in fact, the volume depen-
dence of Eq(50) is not there. What is constantly present is d
the total number of particleN. We thus get the interesting tap - H(r—ap,p)}
observation that one could define a new coupling parameter
yN for a many-body system, and define a new weak- d
coupling limit N—, y—0, which we only mention paren- ><exp( —ap j)-
thetically, without using it in this work. With this explana-
tion of the normalization convention, all our previous results(3) Pull out, only when possible, all differentiations with
are consistent with conventional normalization definitions. Inrespect to spatial coordinates to the left, paying attention to
Eq. (50), p is dimensionally inverse volume, making it con- the commutativity of operation4) Do the integrations over
sistent with the normalization given by Edq4.1)—(43). This  time. (5) Perform the integration over momentum. In the
statement may be checked by dimensional analysis of E@bove procedure$4) and(5) may be interchanged.
(50). We will use p from now on.

To simplify Eq. (50), we may follow these step$1) Do IV. TIME EVOLUTION OF THE ONE-DIMENSIONAL
the Space integrations first over the fOI’C@ShIﬁ: all vari- GRAVITATIONAL GAS

ables using the equations
To begin, we use the one-dimensional form of Esfl),

and put

d d
ex;{ —ap E)F(r,r’)=F(r—ap,r’)exp< —ap E)’ MN(r—r")

(52) or =ye(r—r’), (53
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When Eq.(53) is substituted in Eq(33), one gets f(r,p,0)=p(r)e(p), (55
(N=1)» , ,
b=?de g2(x—x")=(N—1)»? where
for any L (length that takes the place of the volunig In
this work, we do not take the thermodynamic limit,Is@s in (r)= \[ exp(
fact finite.
Second, we assume an initial factored distribution of the
form
. (p)= \ﬁ exp(— ap?)
p3(rr',r",p,0)=p(r,0p(r' 0)p(r",0¢(p) (54 ¢PI=NT P
and consider the example of a “petite-bang” universe with a
nonsingular explosion. and evaluate Eq(51) term by term, labeling the terms by
We use the initial Gaussian space and Maxwellian distrisubscripts according to the order of appearance,
bution P=potp1tp2tp3tpstpstpe:

_ af ) at?
Po= N Zigrattim® &0~ 1T e at@n?) [ | (56)

N—1
pi= ( )Y'Bm[\/7fdperf2[\/_(r—pt/m)]exp( pp?)—erfar]|, (57)
4a(N—1 t S1
p2=— - m ” Vfr_ffodslfo d52f dp(1—28p?)exd — Bp?](r —ps,/m)erf Va(r —ps,/m)]
X exf — a(r—ps,/m)?]
_ AN 1)7\/_J { erf(\/ar)exp — arz)t—stl erf(\a[r —ps, /m])exp — a[f—psllm]z)}
+% [ftdsl erf(\a[r — ps, /m]) —erf(Jar)t }(1_2,3p2)exp(—,8p2), 58
21 Jo
N—1)(N-2)»? (e
p3=( s p- z mfodslfold%f dp[282p?—1lerP[ Va(r +ps,/m)Jexd — a(r + ps,/m)?]exp( — Bp?)
_ _ 2 22 _
_(NDN-2)m \Efdp—(zﬂ i) exp(—ﬁp%[[erf(ﬁr)]st—f‘dsl[er«ﬁ[wpsl/m])]s], (59
T p 0
p4=0, -
n2 492 2 t 4 2
—erf| \/rrs [ Jame "+ mmre " erf<r>]+w3’2ps1”, (61

m
Pe= nSy"’QZf dp(282p%-B) e pP° sz: — Jmat(p—mrit)erfya(r — ptim) + mya(e @ —PUM?_ g=ar?)
aNTT

=

+ a\Jm(pt—mr)erf(yar) (62)
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Note that ast—oe, there is an irreversible approach to may be immediately used for many physical applications. As
uniformity. It is for this reason that we introduce the concepta first test case, we have used it for a favorite toy system in
of semiergodicity, ergodic only in spatial coordinates. In cos-stellar dynamics, providing some insight into the evolution
mological terms, this “petite universe” is an open universe.of a one-dimensional gravitational system. In the course of
We have found this to be true for other initial momentumthis study, we introduce the concept of “semiergodicity,”
distributions. Exact statements about the behavior of the mgaointing to some examples of irreversible systems that ex-
mentum distribution for this system is not so straightforwardemplify a Prigogine conjecturglQ]. It would be interesting
and will be treated elsewhere. Nevertheless, despite thi® see if a “semiergodic” system as introduced in this paper
semiergodicity, the short-time behavior is quite interestingis in fact fully ergodic. That might offer some interesting
Microstructures naturally develop in time; this is an intrigu- consequence for the proof that some systems are indeed er-
ing hint as to the development of substructures in threegodic. In another work, we will describe the time evolution
dimensional gravitational systerfig]. These microstructures of the momentum distribution function; only at that point
may be seen by expanding the time integrand in Taylor seeould one demonstrate the consistency of our results with
ries, then integrating the results term by term. For examplewell-known virial theorems in stellar dynami¢1].
up to second order in time, we get the following: We have elsewheriel2] applied our time evolution equa-

tion and used it to resolve some difficulties on the conver-

2(N—1) yat? - gence of transport coefficients. We now raise the possibility
p1~ Y [exp(— a’r")/m— ar erf(Var) of using our time evolution equation for three-dimensional
problems, in stellar dynamics, in particular. Among such

X exp(— arZ)/\/;], (63 studies will be the time evolution of pair correlations, using

projection operators that integrate all but two spatial coordi-
which demonstrates the growth of the substructure. We poshates. Such an approach may be applied to the evolution of
pone a more exhaustive numerical study of the formation anlinary stars in globular clustef43]. But as the specification
development of substructures or microstructures found elsef the initial conditions affords us the freedom to vary the
where[8] and in this example to later worf®]. The sub-  problem that we address, we think that there will be many
structures that we have so far found by starting with ourmore applications of our time evolution equation to many-
analytic treatment are all irreversible. body physics.

V. SUMMARY AND PROSPECTS
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